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Abstract 

The Earth Mover's Distance (EMD) between two finite distributions of weight is proportional 
to the minimum amount of work required to transform one distribution into the other. Cur- 
rent content-based retrieval work in the Stanford Vision Laboratory uses the EMD as a 
common framework for measuring image similarity with respect to color, texture, and shape 
content. In this report, we present some fast to compute lower bounds on the EMD which 
may allow a system to avoid exact, more expensive EMD computations during query pro- 
cessing. The effectiveness of the lower bounds is tested in a color-based retrieval system. In 
addition to the lower bound work, we also show how to compute the EMD under translation. 
In this problem, the points in one distribution are free to translate, and the goal is to find a 
translation that minimizes the EMD to the other distribution. 
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1    Introduction 

Recent image-based retrieval work ([11, 12]) in the Stanford Vision Laboratory (SVL) has con- 
centrated on providing a common framework for measuring image similarity with respect to color, 
texture, and shape content. In this framework, the summary or signature of an image is a finite 
collection of weighted points. For example, in [11] the color content signature of an image is a 
collection of dominant image colors represented in the CIE-Lab space, where each color is weighted 
by the fraction of image pixels classified as that color. In [12], the texture content signature of 
a single texture image is a collection of dominant spatial frequencies, where each frequency is 
weighted by the amount of energy at that frequency. In current shape-based retrieval work, the 
shape content signature of an image is a collection of points in parameter spaces of basic shapes 
(such as line segments and circular arcs) which fit well into image edges, where each basic shape 
occurrence is weighted by its length. To complete the uniform framework, a distance measure on 
weight distributions is needed to measure similarity between image signatures. 

The Earth Mover's Distance (EMD) between two distributions is proportional to the minimum 
amount of work required to transform one distribution into the other. Here one unit of work is 
defined as the amount of work necessary to move one unit of weight by one unit of distance. The 
transformation process can be visualized as filling holes with piles of dirt. The holes are located 
at the points in the lighter distribution, and the dirt piles are located at the points in the heavier 
distribution. The volume of a hole or dirt pile is given by the weight value of its position. If the 
total weights of the distributions are equal, then all the dirt is used to fill the holes. Otherwise, 
there will be dirt leftover after all the holes have been completely filled. The EMD is defined 
to be the minimum amount of work to fill the holes divided by the total weight of the lighter 
distribution. Normalizing by the amount of dirt moved means the EMD will not change if the 
weights of both distributions are multiplied by a constant. The EMD is a metric when the total 
weights of the distributions are equal and the "ground distance" between holes and dirt piles is a 
metric ([12]). There is a very efficient method for computing the EMD which is based on a solution 
to the well-known transportation problem ([4]) in operations research. 

In current SVL content-based retrieval systems, the distance between two images is taken as 
the EMD between the two corresponding signatures. The query time is dominated by the time 
to perform the EMD computations. Two common types of queries are nearest neighbor queries 
and range queries. In a nearest neighbor query, the system returns the K database images which 
are closest to the given query. In a range query, the system returns all database images which are 
within some distance r of the query. For both query types, fast lower bounds on the EMD may 
decrease the query time by avoiding slower, exact EMD computations. During nearest neighbor 
query processing, an exact EMD computation need not be performed if there is a lower bound 
on the EMD which is greater than the Kth smallest distance seen so far. During range query 
processing, an exact EMD computation need not be performed if there is a lower bound on the 
EMD which is greater than r. Of course, whether or not the query time decreases when a lower 
bound is used depends upon the number of exact EMD computations avoided and the computation 
times for the exact EMD and the lower bound. 

It is known ([12]) that the distance between the centroids of two equal-weight distributions is 
a lower bound on the EMD between the distributions. There are, however, common situations 
in which distributions will have unequal weights. For example, consider the color-based retrieval 
work [11] in which the weight of a dominant image color is equal to the fraction of pixels classified 
as that color. Assuming all the pixels in an image are classified, the weight of every database 
signature is one. EMD comparisons between unequal-weight distributions arise whenever the system 



is presented with a partial query such as: "give me all images with at least 20% sky blue and 30% 
green". The query signature consists of two points in CIE-Lab space with weights equal to 0.20 
and 0.30, and therefore has total weight equal to 0.50. In the texture world, it seems difficult 
to accurately classify every pixel in an image as one of a handful of dominant image textures. 
In this case, using the fraction of classified pixels as weight means that image distributions will 
have different weights. Of course, partial texture queries such as "give me all the images with at 
least 30% sand and 30% sky" also imply comparisons between distributions of unequal weight. In 
our current shape-based retrieval work, the weight of a basic shape that occurs in an image or 
illustration is equal to its length. Using length as weight, two image shape distributions are very 
likely to have different total weights. In all three cases, the total weight of a distribution is equal 
to the amount of information present in the underlying image. Since one cannot assume that all 
database images and queries will contain the same amount of information, lower bounds on the 
EMD between unequal-weight distributions may be quite useful in retrieval systems. 

The first part of this report is dedicated to lower bounds on the EMD, and is organized as 
follows. In section 2, we give some basic definitions and notations that will be used thoughout the 
report. This section includes a formal definition of the Earth Mover's Distance. In section 3, we 
prove the centroid-distance lower bound for equal-weight distributions (section 3.1), and then we 
extend the idea behind this lower bound to obtain a centroid-based lower bound between unequal- 
weight distributions (section 3.2). In section 4, we present lower bounds which use projections 
of distribution points onto random lines through the origin and along the directions of the axes. 
These "projection-based" lower bounds involve the EMD between distributions on the real line, 
which is the subject of section 5. For one-dimensional distributions, we provide very efficient 
algorithms to compute (1) the EMD between equal-weight distributions and (2) a lower bound on 
the EMD between unequal-weight distributions. Both these algorithms use a single sweep over the 
distribution points. Furthermore, the lower bound for unequal weight case gives the exact EMD 
when applied in the equal weight case. In combination with the projection-based lower bounds in 
section 4, the exact and lower bound computations in one-dimension yield fast to compute lower 
bounds in general dimensions for both the equal and unequal-weight inputs. In section 6, we show 
some experiments that use our lower bounds in the previously mentioned color-based image retrieval 
system. 

Another potentially useful area of exploration is computing the EMD under some given trans- 
formation group, such as the group of translations. In this problem, the points in one distribution 
can be transformed, and the goal is to find a transformation that minimizes the EMD to the other 
distribution. An application is shape-based retrieval, where visual similarity may not be captured 
by a direct comparison of the shapes present in two images due to differences in scale, orienta- 
tion, and/or position. In the second part of this report, we consider the problem of computing 
the EMD under translation. In section 7, we give both a direct algorithm (section 7.1) and an 
iterative algorithm (section 7.2) for this problem. The direct algorithm is conceptually simple and 
is guaranteed to find a globally optimal translation, but it is not practical because it requires an 
unreasonable amount of time. The iterative method is efficient, but it may find only a locally 
optimal translation. Nonetheless, it may find a globally optimal translation if the iteration is run 
with a few different initial translations. Both algorithms require a subroutine that computes a 
point which minimizes the sum of weighted distances to a given set of points. This problem is the 
subject of section 8 where we give solutions when the distance function is the L2-distance squared 
(section 8.1), the Li-distance (section 8.2), and the Euclidean L2-distance (section 8.3). Finally, in 
section 9, we give some concluding remarks on both EMD lower bounds and computing the EMD 
under a transformation group. 



Note that the results presented in this report may still be very useful if one is interested in only 
the minimum work instead of the EMD, or one wants to use a different normalization factor than the 
weight of the lighter distribution. Statements about the EMD may be transformed into statements 
about the minimum work by multiplying through by the smaller weight. In fact, our reasoning 
about the EMD usually proceeds by reasoning about the work and dividing by the appropriate 
constant in the last step. 

2    Basic Definitions and Notations 

We denote a finite distribution x as 

x = { {xi,wi),(x2,w2),...,(xn,Wn) } = (X,w) E Drf'n 

where 
X = [xi ■■■ xn}<E Rdxn        and       w > 0. 

Here d is the dimension of the points Xi E Rd, and n is the number of points. For a vector v, let 
v% be the sum of the components of v. The (total) weight of the distribution x is 

n 

i=i 

Given two distributions x = (X,w) E Dd'm and y = (Y,u) E Dd'n, a flow between x and y is any 
matrix F = (fij) € Rmxn. Intuitively, fij represents the amount of weight at X{ which is matched 
to weight at yj. An equally valid interpretation for fa is the amount of weight at yj which is 
matched to weight at Xj. The term flow is meant to evoke the image of weight flowing from the 
points in the heavier distribution to the points in the lighter distribution until all the weight in the 
lighter distribution has been covered. If one distribution is known to be heavier than the other, 
then we shall write that a flow is from the heavier distribution to the lighter distribution. The flow 
F is a feasible flow between x and y iff 

fij   >   0       i = l,...,m, j = l,...,n, (1) 
n 

^2 fij    <   Wi       i = l,...,m, (2) 
i=i 
m 

Yl fij    ^    UJ        j = 1, • • •, n,     and (3) 

m     n 

J2Ylfoj   =   min(^s,MS). (4) 
i=i j=\ 

Constraint (1) requires the amount of xi matched to yj to be non-negative. Constraint (2) ensures 
that the weight in y matched to Xi does not exceed toj. Similarly, (3) ensures that the weight in x 
matched to yj does not exceed Uj. Finally, constraint (4) forces the total amount of weight matched 
to be equal to the weight of the lighter distribution. 

Let F(x, y) denote the set of all feasible flows between x and y. The work done by a feasible 
flow F E T(x, y) in matching x and y is given by 

m     n 

WOnK(F,x,y) = Y,Y,fndiJ> 
i=\j=\ 



where 
dij = d(xi,yj) 

is the distance between X{ and yj. Throughout most of this report we shall use the Euclidean 
distance d(xi,yj) = \\x{ — yj\\2 as the ground distance d, and this choice should be assumed unless 
otherwise indicated. The Earth Mover's Distance EMD(x,y) between x and y is the minimum 
amount of work to match x and y, normalized by the weight of the lighter distribution: 

EMD(:r,y) = minF=VvW*<v) *X* E?=1 fi^ = min^(/o)^(*,y) WORK(F,x,y) 
min(ws,iiS) min(u;s,«s) 

The work minimization problem in the numerator of (5) is a linear program, and hence can be 
solved by applying the simplex algorithm ([10]). Applying the simplex method instead to the dual 
linear program results in an increasing sequence of objective function values, each of which is a 
lower bound on the EMD. In contrast, all lower bounds presented in this report are independent 
of the algorithm used to compute the exact EMD. 

3    Centroid-based Lower Bounds 

The centroid x of the distribution x = (X, w) G ~Dd'n is defined as 

a* — —^  l 
wjxJ 

In section 3.1 we shall prove that the distance between the centroids of distributions is a lower 
bound on the EMD between distributions of equal weight. There is also, however, a centroid-based 
lower bound if the distributions are not equal weight. If x = (X,w) is heavier than y = (Y,u), 
then all of the weight in y is matched to part of the weight in x. The weight in x which is matched 
to y by an optimal flow is a sub-distribution x' of x. Formally, a sub-distribution x' = (X',w') of 
x = (X, w) € Dd,n, denoted x' C x, is a distribution with X' = X and 0 < w' < w: 

x' = { (xi,u>i),..., (xn,w'n) } = (X,w') E Dd'n,        0 < w'j < Wj for j = l,... ,n. 

In words, the points of a sub-distribution x' are the same as the points of x and the weights of 
x' are bounded by the weights of x. One can visualize a sub-distribution x' C x as the result of 
removing some of the dirt in the piles of dirt in x. The minimum distance between the centroid 
of y and the locus of the centroid of sub-distributions of x of total weight UY, is a lower bound on 
EMD(a;,y). Details are given in section 3.2. 

3.1    Distributions of Equal Weight 

Theorem l Suppose x = (X, w) 6 Dd,m and y = (Y, u) G Drf,n are distributions of equal total 
weight w-% = u%. Then 

EMDlHI(a;,y) > ||ä-j/||. 

Here the ground distance || • || is any Lp norm used to measure d(xi,yj). 

Proof   The equal weight requirement implies that for any feasible flow F = (fij), 
m 

Y^ fij   =   Uj        and (6) 
i=\ 
n 

H/ij    =   wi- (7) 



Then 

m n 

WiXi - E Ujyj 
i=l j=l 
Y,' 

J2 mxi - E ujVj 
1=1 3=1 

EE/<^-EE-te     ((6). (7)) 
i=l j=l i=l j=l 

EE/ü(^-%) 
i=l j=l 

^    E E 11 fij & - Vi) 11        (A-inequality) 
i=i j=i 
m     n 

= EE/«iii^-%n    (fij>°) 
i=l j=l 

m     n 

^ EE^iii^-%'ii- 
i=lj=l 

Dividing both sides of the last inequality by wj = us yields 

l^i=l 2^j=l Jij\\xi ~ Vj\ 
\x-y\\ < Wz 

for any feasible flow F. Replacing F by a work minimizing flow gives the desired result. Note that 
this proof holds for every Lp distance/norm 11 • 11. ■ 

3.2    Distributions of Unequal Weight 

Let x = (X,w) € Dd'm and y = (Y, u) E Dd'n be distributions with w-£ > u^,- In any feasible flow 
JP = (fij) from x to y, all of the weight Uj must be matched to weight in x 

i=l 

and the total amount of matched weight is 

Let 

i=lj=l 

xF = { (zi,£ hj),(x2,J2 /2j), • • ■ ,(^m,E M } = (X,wF). 
3=1 3=1 j=l 

Clearly, w^ = u%. From the previous section we know that 

It follows that 

EMD(/,y) > 

EMDf/,?/) >     min 

xF -y 

F1       — xb   -y (8) 



where the minimum is taken over all feasible flows F' from x to y. Since (8) holds for every feasible 
flow F from x to y, we can replace F by a work minimizing flow F* and obtain 

EMD(x,y) = EMT>(xt ,y) >     min 
F'eT(x,y) 

(9) 

The minimum on the right-hand side of the inequality (9) can be re-stated as the minimum distance 
of the centroid of y to the centroid of any sub-distribution of x of total weight u^: 

mm 
F'er{x,y) 

mm 
x' = (X,w') C x 

W'Y, = «£ 

(10) 

Clearly, xF' is a sub-distribution of x with total weight u% for every F' G F(x,y). It remains to 
argue that any sub-distribution x' C x with total weight u^ is xF' for some F' G !F(x,y). Since x' 
and y are equal-weight distributions, any one-to-one matching of the weights in x' and y defines a 
feasible flow between x' and y and, therefore, between x and y. Combining (9) and (10), 

EMD(a;,y) > min 
x' = (X, w') C x 

x' -y (11) 

In section 3.2.1 we show how this minimization problem can be formulated as the minimization of 
a quadratic function subject to linear constraints. However, solving this quadratic programming 
problem is likely to take more time than computing the EMD itself. In section 3.2.2 we show how 
to compute a bounding box for the locus of the centroid of any sub-distribution of x of total weight 
U£. The minimum distance from the centroid of y to the bounding box is a lower bound of the 
EMD, although it is obviously not as tight as the lower bound in (11). 

3.2.1    The Centroid Lower Bound 

Given a distribution x = (X, w) G Dd'm, the locus of the centroid of sub-distributions of x of weight 
aw%, 0 < a < 1, is 

Ca(x) = { : 0 < ibi < Wi, 0 < w-£ = eras 

Let 

Then 

Wi 
Vi = and        Wi = 

Wi 

wz awY, 

1  w 
Ca{x) = <^   J2V*Xi   '■   0<V<W= ,  «E = 1   \ , 

1=1 
a Wj; 

or, in terms of matrix multiplication, 

1  w 
Ca(x) = {Xv  : 0<v<w = , r v = 1 }. (12) 

The symbol "1" is overloaded in the constraint lTv = 1; on the left-hand side it is a vector of m 
ones, while on the right-hand side it is simply the integer one. It is easy to see from (12) that 

Cai{x)DCa2(x)    iiai<a2. 



The locus Ca(x) is a convex polytope. The intersection of the halfspaces v > 0 and v < w is a 
convex polytope Pi. The intersection of Pi with the hyperplane lTv = 1 is another convex polytope 
P2 of one dimension less. Finally, applying the linear map X to P2 gives the convex polytope Ca{x). 
In [1], the authors characterize and provide algorithms to compute the locus CL,H{S) of the centroid 
of a set S of points with approximate weights, where weight W{ lies in a given interval [k, hi] and 
the total weight W is bounded as L < W < H. The locus Ca{x) = Ci,i(X) if [kM] = [0,w{]. 

Now suppose that y = {Y,u) G Dd'n is a lighter distribution than x. In the previous section we 
argued that the EMD' is bounded below by the minimum distance from y to a point in CUT-lWY1(x). 
We denote this minimum distance as CLOC(a;,y) because it uses the locus of the centroid of sub- 
distributions of x of weight it£. This lower bound can be computed by minimizing a quadratic 
objective function subject to linear constraints: 

(CLOC(x,y))2 =min \\Xv v\\i 

subject to 

v   >   0 
1 

V    <    w = —w 

lTv    =    1. 

The above minimization problem consists of m variables and 2m + 1 linear constraints which are 
taken directly from (12). 

3.2.2     The Centroid Bounding Box Lower Bound 

As previously mentioned, the computation of the CLOC lower bound as described in the previous 
section is likely to require more time than an exact EMD computation. Yet the centroid locus 
Ca(x) can still be very useful in finding a fast to compute lower bound on the EMD. The idea 
is to precompute a bounding box Ba(x) for Ca(x) for a sample of a values, say a = 0.05A; for 
k = 1,..., 20. When given a lighter query distribution y at query time, the minimum distance from 
y to the bounding box Bav{x) is a lower bound on EMD(x,y), where ay is the largest sample a 
value which does not exceed the total weight ratio u^/w-z (the correctness of ay follows from the 
containment property (14)). This lower bound computation will be very fast because the bounding 
boxes are precomputed and the query time computation of the minimum distance of the point y to 
the box Bay (x) is a constant time operation (it depends only on the dimension d, not the number 
of points in x or y). 

If we write the matrix X in terms of its rows as 

X = 

T -i 

L U 

GR dxm 

then 
r     T     -\ 

Xv = GRrf. 



The computation of an axis-aligned bounding box for the centroid locus Ca(x) can be accomplished 
by solving the 2d linear programs 

a/fc = min rjv,    bk = max r^v        k = 1,..., d 

subject to 

v   >   0 

v   <   w = w (13) 

lTv   =   1. 

Each of these linear programs has m variables and 2m + 1 constraints. The axis-aligned bounding 
box for the centroid locus Ca(x) is 

d 

Ba(x) = l[[ak,bk}- 
k=i 

As with the true centroid loci Ca(x), we have a containment property for the bounding boxes 
Ba(x): 

Bai{x) D Ba2(x)    if ai < a2. (14) 

This fact can be verified by observing that the constraints over which the minima ak and maxima 
bk are computed get weaker as a decreases (the only constraint involving a is (13)). Note also that 
the box Ba(x) includes its "interior" so that the lower bound CBOX(a;,y) is zero if y lies "inside" 
Bav(x). Using the CBOX lower bound instead of the CLOC lower bound trades off computation 
speed for pruning power since the former is much faster to compute, but 

EMD(z,y) > CLOC(x,y) > CBOX(x,y). 

Nevertheless, the pruning power of the CBOX lower bound will be high when the query distribution 
is well-separated from many of the database distributions (which implies that the centroids will 
also be well-separated). 

4    Projection-based Lower Bounds 

For v on the unit sphere S"*-1 in Rd, the projection proj„(a:) of the distribution x = (X, w) G Kd'm 

along the direction v is defined as 

proj„(x) = { (vTxuwi), (vTx2, w2),.. ■, (vTxm, wm) } = (vTX, w) £ D1'™. 

In words, the projection along v is obtained by using the lengths of the projections of the distribution 
points along v and leaving the corresponding weights unchanged. The following lemma shows that 
the EMD between projections is a lower bound on the EMD between the original distributions. 

Lemma 1 Let v 6 S"*-1.  Then 

EMB(x,y) > EMD(proj„(a;),proj„(y)). 

10 



Proof   This theorem follows easily from the definition of the EMD and the fact that 

\vTXi - vTyj\    = \vT(xi - yj)\ 

= \\v\\2 \\xi -yj\k \cos0v^x._y.)\ 

= \\xi-Vih |cosö„)(a.._w)| 

\vTXi - vTyj\    < \\xi-yj\\2- 

■ 
The following theorem is an immediate consequence of Lemma 1. 

Theorem 2 Let V = {vi,..., vL} C S"*-1 and 

PMAX(V,x,y) = max EMD(projt;(a;),proj,)(y)) 
v€V 

Then 
EMD(a;,y) > PMAX(V,x,y). 

For this lower bound to be of practical use, we must be able to compute it efficiently. In section 5, 
we present a straightforward, G(m + n) time algorithm to compute the EMD between equal-weight 
distributions on the line. In combination with Theorem 2, this algorithm provides the means to 
compute quickly a lower bound on the EMD between two equal-weight distributions. 

One pruning strategy is to pick a set of random directions V along which to perform projections, 
and apply Theorem 2 to obtain a lower bound. The hope is that the differences between two 
distributions will be captured by looking along one of the directions in V. Another pruning strategy 
is to use the set of orthogonal axis directions for the set V. The following corollary is an immediate 
consequence of Theorem 2. 

Corollary 1 Let 
E = {e1,...,ed}cSd-1 

be the set of axis directions, and let 

PAMAX{x,y) = PMAX{E,x,y). 

Then 
EMT>(x,y) > PAMAX(x,y). 

Looking along the space axes is intuitively appealing when each axis measures a specific property. 
For example, suppose that distribution points are points in the CIE-Lab color space ([16]). If two 
images are very different in terms of the luminance values of pixels, then comparing the signature 
projections along the L-axis will reveal this difference and allow the system to avoid an exact EMD 
computation. 

When the projection directions are the coordinate axes, we can prove a lower bound which 
involves the sum of the EMDs along axis directions. 

Theorem 3 If 
1     d 

PASUM(x,y) = -= ^EMD(projefc(x),projefc(y)), 
v d k=1 

then 
EMD(x,y) >PASUM(x,y). 
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Proof   The proof uses the fact that 

..  .. 1  ,,  ,, 
ii   - y^n  in 

for any vector a <E Rd, a proof of which may be found in appendix I. It follows that 
m     n -.      m     n 

v«i=ii=i 

1 (fc)        (fc) x\ ' - y) 

-j=i       fc=l 

rf     m     n 

V« fc=l j=l j = l 

m    n ■,       d    m    n 

i=lj=l Vfl^ü^p! 

where the superscript (k) denotes the fcth component of a vector. Therefore 

m    n -I       d     m    n 

min     y^y^ fijllxi — yA\2    >       min     —= Y^ Y^ Y^ f,-. 

-id TO    n 

(fc) (fc) 

> mm      >    >    fij (fc)        (fc) x\    - y) > 

1     d 

-== ^(min(wE,us) x EMD(projefc(x),projeA,(y))) 

1 d 

-7= min(u;s, us) YJ EMD(projefc (a;), projeyfe (y)) 
Vd fc=i 

TO    n 

Fe^(*,y) ^ ^ fij^Xi ~ yi"2    -    T/5 min(™E,us) Y^ EMD(projCt(a;),projCt(y)). 
=ii=i Vd' k=\ 

Dividing both sides of the last inequality by min(ws, us) gives the desired result. ■ 
Note that PASUM(:r, y) may be rewritten as 

PASUM(,,y) = Vd /ELiEMD(pro^(,),proJet,(y))\ _ 

This alternate expression makes it clear that PASUM(z, y) is a better lower bound than PAMAX(x, y) 
iff the square root of the dimension times the average axis projection distance is greater than the 
maximum axis projection distance. 

5    The EMD in One Dimension 

Let x = (X,w) € D1'"1 and y = (Y,u) € D1,n be distributions on the real line. Assume the points 
in x and y are sorted by position: 

xi < x2 < ■ ■ ■ < xm       and       yx < y2 < ■ ■ ■ < yn- 

12 



Define the cumulative distribution function (CDF) of x as 

W(t) = < 
0 

Wi 

if t G (-00,Xi) 
if i G [a;fc,a;fc+i; 1 < k<m-l 

^£ = £^1^   if te [a;m,oo). 

Similarly, the CDF of y is 

C/(i) = < 
0 if* e (-00,3/1) 

Ej=i«j if*G[w,yt+i),   l</<n-l 
. «E = E"=i«j    ifiG [3/n,oo)- 

If x and y are equal weight, then the work to transform one distribution into the other is the area 
between the graphs of the CDFs of x and y. See figure 1. We will now prove 

Theorem 4 If x = (X,w) G D1'™ and y = (Y,u) G D1,n have equal weight WE = UE, then 

EMD(rc,y) = 
I^\W{t)-U{t)\dt 

WE 

Proof   Let 
n <r2< ■■■ < rm+n 

be the sorted list of breakpoints xi,x2,..., xm, yx, y2,..., yn- Note that W(t) and U(t) are constant 
over the interval t G [rk,rk+i) for fc = 1,... ,m + n - 1, V^(t) = C/(i) = 0 for t G (-00,ri), and 
W(t) = U{t) = U>E = uz for t G [rm+n, 00). Therefore the integral of the absolute difference of the 
CDFs may be written as the finite summation 

f J —1 

m+n—1 

\W(t)-U(t)\dt=   J2  (r*+i 
fe=i 

rk)\W(rk)-U(rk)\. 

We claim that there is exactly one feasible flow JP that can morph x into y. Consider the interval 
(rk,rk+i). At any position t in this interval, the absolute difference \W(t) - U(t)\ is equal to 
\W{rk) - U(rk)\. Suppose that W(rk) > U(rk). Then in any feasible flow from x to y, exactly 
W(rk) — U(rk) weight from x must be moved from rk to rk+\. If less than this amount is moved, 
then there will be less x weight than y weight in [rk+\, 00) after the flow is complete. If more than 
this amount is moved, then there will be more x weight than y weight in [rk+i, 00) after the flow is 
complete. Moving weight from rk+± to rk would only increase the surplus of a; weight in (-00, rk}. 
See figure 2(a). Similar logic shows that if U(rk) > W(rk), then exactly U(rk) - W(rk) weight 
from x must be moved from rk+i to rk. This case is illustrated in figure 2(b). In either case, the 
amount of work Ek done in moving weight from x over the interval {rk,rk+i) is 

Ek = (rk+1-rk)\W(rk)-U(rk)\. 

The total work E performed in the unique feasible flow from x to y is 

m+n—l 

E=     Y,    Ek- 
k=l 

It follows that 
EMD(x,y) = —, 

WE 
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U(t) 

13 

12 

11 

10 

W(t) 

2/i x\ X2 V2 Xj, Us        x4 

-®- 

wi = 2    u;2 = 3 «2 = 1 

«i = 10 

O- 
«3 

W4 

Figure 1: The cumulative distribution functions (CDFs) for the equal-weight line distributions x 
and y are W(t) and U(t), repsectively. The work to transform x into y is equal to the area between 
the two CDFs. The unique transforming flow is shown with directed lines from x weight to the 
matching y weight. The EMD between x and y is obtained by dividing the work by the total weight 
of the distributions (ws = u^ = 13 in the picture). 
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Case. ws = t*E, W(rk) > U(rk), ws - W{rk) < «s - ?7(rfc) 

I W(rk) - - U(rk) 

W(rfc) \ -►             rv_' ws - W{rk) 
 n...  (4  

o 
U 1/ 

C/(rfc) ffc r*+i /"~~\ «E - U(rk) 

^(r/fe) 
C i 

' ' 

Ml w-z - U{rk) 
n  (4  \) w 

^(r/t) n nt+1/"""N UT. - U{rk) 

Case, WT, = ME, W{rk) < U(rk), ws - W{rk) > its - U{rk) 

W(rk) 
< 

Ü 

(b) 

U(rk) 

U(rk) 

U(rk) - W(rk) 

 £ 
U(rk)    /—\    rk 

-E 
^ 

5" 
n+i 

0 
B- 

r-Jfc+1 

it>E - W{rk) 

> 

«E - f (rjfe) 

™E - ^(»"fc) 

«E - U{rk) 

Figure 2: The unique feasible flow between equal-weight distributions x — (X, w) and y = (Y, it) 
on the line. Here ri < • ■ • < rm+n is the position-sorted list of points in x and y, and J^(i) and 
C7(i) are the CDFs for a; and y, respectively, (a) W(rk) > U(rk), wj; - W{rk) < izs - U(rk). In 
this case, a flow from x to y is feasible only if exactly W(rk)- U(rk) of x weight travels from rk to 
rk+i during the flow, (b) W(rk) < U{rk), ius - W(rfc) > us - U{rk). In this case, a flow from x 
to y is feasible only if exactly U(rk) - W(rk) of x weight travels from rk+i to rk during the flow. 
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and this completes the proof. ■ 

When the weights of the distributions are unequal, there is no longer a unique feasible flow. 
However, arguments similar to those used above can be used to compute a lower bound on any 
feasible flow. Once again consider the interval (rk,rk+i), and WLOG assume w-s > u-£ and that 
x weight is moved to match all the y weight. When there is more x weight than y weight in 
both (—00, rk] and [rk+\, 00), then there will be feasible flows in which no x weight travels through 
(rk:rk+i). If there is more x weight than y weight in (—00,rk], but less x weight than y weight in 
[rfc_|_i,oo), then («s — U(rk)) — (ws — W(rk)) °f *ne x weight must be moved from rk to rk+\ in 
order to cover the y weight in [r^+i, 00). See figure 3(a). If there is less x weight than y weight in 
(—oc,j-fc], but more x weight than y weight in [rfc+1,00), then U(rk) — W(rk) of the x weight must 
be moved from rk+i to rk in order to cover the y weight in (—00,rk]. This case is illustrated in 
figure 3(b). Under the assumption that WY, > «S, it cannot be the case that there is less x weight 
than y weight in both (—00,7^] and [rk+i,oo). 

Pseudocode for the lower bound described in the previous paragraph is given below. The 
routine is named FSBL because the lower bound follows simply from flow feasibility (FeaSiBiLity) 
conditions. 

function FSBL(x,y) := /* assumes d = 1, wy, > uy */ 
work = 0 
rx = min(xi,yi) 
for k = 1 to m + n — 1 

r-fc+i = smallest point in x or y that is greater than r& 
if u-£, — U(rk) > w-£ — W(rk) then 

work += ((«s - U(rk)) - {w^ - W{rk))) x (rk+1 -rk) 
elseif U{rk) > W{rk) then 

work += (U(rk) - W{rk)) x (rk+1 - rk) 
end if 

end for 
return (work / u^) 

end function 

We have argued that 

Theorem 5 If x and y are distributions on the line, then 

EMD(i,y) >FSBL(x,y). 

If wy = uE, then (us - U{rk) > w^ - W{rk)) = {W(rk) > U{rk)), (uE - U{rk)) - {wy - W(rk)) = 
W(rk) — U(rk), and the routine computes the exact value EMD(x,y). 

Theorem 6 If x and y are two equal-weight distributions on the line, then 

EMB(x,y) = FSBL{x,y). 

Assuming that the points in x E D1,m and j/ £ D1'" are in sorted order, the routine runs in linear 
time @(m + ri). The combined sorted list ri,... ,rm+n of points in x and y is discovered by walking 
along the two sorted lists of points.  At any time during the algorithm, there is a pointer to the 
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Case. WT, > uE, W(rk) > U{rk), ws - W(rk) < «E - f7(rfc) 

(a) 

(w£ - us) + ^(nO 
> 

C/(r/t) 

^E ~ U(rk)) - (ws - W(r*)) 

rk+i /"~""\    uz - U(rk) 

/I I 
■€ £- 
^ r-fc+i 

«s - f^(r-fc) 

«s - U(rk) 

Case, ws > «s, W{rk) < U(rk), w% - W(rk) > «E - I7(r*) 

(b) 

Figure 3: Necessary conditions for a feasible flow between unequal-weight distributions x = (X, w) 
and y = (V,«) on the line, where WY, > «s- All y weight must be covered by x weight, (a) 
W(rk) > U(rk), w-£ — W(rk) < «s — U(rk). In this case, a necessary condition to have a feasible 
flow from x to y is that at least (w2 - W(rk)) - («s - U{rk)) of x weight travels from rk to rk+i 
during the flow, (b) W(rk) < U(rk), WE - W(rk) > «s - U(rk). In this case, a necessary condition 
to have a feasible flow from x to y is that at least U(rk) -W(rk) of x weight travels from rk+i to 
rk during the flow. 

17 



next x and next y value to be considered. The value r^+y then follows in constant time from the 
value of rfe. 

The FSBL lower bound may be substituted for the EMD function in the PMAX, PAMAX, and 
PASUM lower bounds to obtain efficient to compute, projection-based lower bounds 

PMAXFSBL(^z,y)    =    maxFSBL(projt)(a;),proj„(j/)) 
vEV 

=   PMAX(V, x, y)       when w^ = «s 

PAMAXFSBL(Z,?/)    =   fcmaxrf FSBL(projefr(a;),projei.(y)) 

=   PAMAX(x,y)        when ws = its 

1     d 

PASUMFSBL(x,y)    =    -^£FSBL(proje>),projefc(y)) 
v« k=\ 

=   PASUM(x,y)        when ws = us 

in which x and y are not necessarily equal weight. The second equality in each of the three pairs 
of equalities follows directly from Theorem 6 and the definitions of PMAX(V, x, y), PAMAX(:r, y), 
andPASUM(x,y). 

6    Experiments in Color-based Retrieval 

In this section, we show some results of using the lower bounds CBOX, PMAXFSBL, PAMAXFSBL, 

and PASUMFSBL in the color-based retrieval system described in [11]. This system summarizes 
an image by a distribution of dominant colors in the CIE-Lab color space, where the weight of 
a dominant color is equal to the fraction of image pixels which are classified as that color. The 
input to the system is a query and a number K of nearest images to return. The system computes 
the EMD between the query distribution and each of the database distributions. If the query is 
a full image (e.g. an image in the database), then the query distribution and all the database 
distributions will have total weight equal to one. In this query-by-example setting, the system first 
checks the distance between distribution centroids before performing an exact EMD computation. 
If the centroid distance is larger than the Kth largest distance seen before the current comparison, 
then the system does not compute the EMD and simply considers the next database image. A 
üC-nearest neighbor database image to the query cannot be missed by this algorithm because the 
centroid distance is a lower bound on the EMD between equal-weight distributions. When the 
query is a partial query (such as "give me all the images with at least 20% sky blue"), an exact 
EMD computation is performed between the query and every database image. 

To use the CBOX lower bound for partial queries, some additional preprocessing is needed. At 
database entry time, the distribution x = (X, w) of an image is computed and stored, as well as the 
centroid bounding boxes Ba(x) for a = 0.05k, k = 1,..., 20. Given a query distribution y = (Y, it) 
of weight its < los, let ay denote the largest sample a value which does not exceed the total weight 
ratio Ms/tos. The system computes the distance between y and the nearest point in Bay(x). This 
is the CBOX lower bound. To use the PMAXFSBL lower bound, a set V of L (specified later) 
random projection directions and the L position-sorted projections of each database distribution 
along the directions in V are computed and stored at database load time. At query time, the query 
distribution is also projected along the directions in V. To use the PAMAXFSBL and PASUMFSBL 
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lower bounds, the d position-sorted projections of each database distribution along the space axes 
are computed and stored at database entry time. At query time, the same axis projections are 
performed on the query distribution. 

There are many factors that affect the performance of our lower bounds. The most obvious is 
the database itself. Here, we use a Corel database of 20000 color images which is dominated by 
outdoor scenes. The order in which the images are compared to the query is also important, If 
the most similar images to a query are processed first, then the Kill smallest distance seen will be 
relatively small when the dissimilar images are processed, and relatively weak lower bounds can 
prune these dissimilar images. Of course, the purpose of the query is to discover the similar images. 
Nonetheless, a random order of comparison may help ensure good performance over a wide range 
of queries. Moreover, if a certain type of query is more likely than others, say, for example, queries 
with large amounts of blue and green (to retrieve outdoor images containing sky and grass), then 
it would be wise to pre-determine a good comparison order to use for such queries. In the results 
that follow, the comparison order is the same for all queries, and the order is not specialized for 
any particular type of query. 

The number K of nearest images to return is yet another factor. For a fixed comparison order 
and query, the number of exact EMD calculations pruned is inversely related to the size of K. This 
is because the Kth. smallest distance after comparing a certain number images, against which a 
lower bound is compared, is an increasing function of K. In all the upcoming experiments, the 
number of nearest images returned is fixed at K = 20. In terms of the actual lower bounds, a 
system may be able to achieve better query times by using more than one bound. For example, 
a system might apply the CBOX lower bound first, followed by the more expensive PASUMFSBL 

bound if CBOX fails, followed by an even more expensive exact EMD computation if PASUMFSBL 

also fails. The hope is that the lower bound hierarchy of CBOX, PASUMFSBL, and EMD speeds up 
query times in much the same way that the memory hierarchy of primary cache, secondary cache, 
and main memory speeds up memory accesses. Our experiments, however, apply one lower bound 
per query. For the PMAXFSBL lower bound, the number L of random directions must be specified. 
This parameter trades off between pruning power and computation speed. The more directions, 
the greater the pruning power, but the slower the computation. In our work, we use the heuristic 
L = 2d (without quantifiable justification), where d is the dimension of the underlying point space 
(so L = 6 in the color-based system). 

All experiments were conducted on an SGI Indigo2 with a 250 MHz processor, and query 
times are reported in seconds (s). The exact EMD is computed via an efficient solution to the 
transportation problem based on the work [6]. The color signature of a typical database image has 
eight to twelve points. The time for an EMD calculation between two such images varies roughly 
between half a millisecond and one millisecond (ms). The EMD computation time increases with the 
number of points in the distributions, so EMD computations involving a partial query distribution 
with only a few points are, in general, faster than EMD computations between two database images. 
The time for an EMD computation between a database image and a partial query with three or 
fewer points is typically about 0.25ms. 

We begin our experiments with a few very simple queries. Each of these queries consists of a 
distribution with exactly one color point in CIE-Lab space. The results of the three queries 
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a 

(b) 
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ümimsiimmtäm 

Lower Bound # Pruned Query Time (s) 

NONE 0 2.210 

CBOX 19675 0.193 

PMAXFSBL 19715 0.718 

PAMAXFSBL 19622 0.441 

PASUMFSBL 18969 0.536 

Figure 4: Query C.l.l - 20% blue, (a) query results, (b) query statistics. 

C.l.l    at least 20% (sky) blue 

C.1.2    at least 40% green and 

C.1.3    at least 60% red 

are shown in figure 4, figure 5, and figure 6, respectively. In these examples, all the lower bounds 
result in query times which are less than the brute force query time, and avoid a large fraction 
of exact EMD computations. The CBOX and PASUMFSBL bounds gave the best results on these 
three queries. 

The next set of examples consists of randomly generated partial queries.  The results for the 
five queries 
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(b) 

(a) 

(b) 

ttX^'MrtmiZMXZiiSi. .(.^„.ä*,,*««,,,^: 

I ''iwtfwuiifi 

■    ■ —- ■■ ■-    :; 

Lower Bound # Pruned Query Time (s) 

NONE 0 3.043 

CBOX 19634 0.233 

PMAXFSBL 10172 2.552 

PAMAXFSBL 16222 1.124 

PASUMFSBL 18424 0.754 

Figure 5: Query C.1.2 - 40% green, (a) query results, (b) query statistics. 

j   XSSSkz     'J£ I- o 

ipfi 

Lower Bound # Pruned Query Time (s) 

NONE 0 2.920 

CBOX 19621 0.240 

PMAXFSBL 15903 1.505 

PAMAXFSBL 17125 0.871 

PASUMFSBL 18182 0.785 

Figure 6: Query C.1.3 - 60% red. (a) query results, (b) query statistics. 
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-J •• ■   -      -       ■     —   • - - .   ■• ■       ............ .  ■■  ...... .. .... .......I, 

(a) 

(b) 

Lower Bound # Pruned Query Time (s) 

NONE 0 4.240 

CBOX 18704 0.496 

PMAXFSBL 17989 1.323 

PAMAXFSBL 17784 1.035 

PASUMFSBL 18418 0.832 

Figure 7: Query C.2.1 - 13.5% green, 3.4%red, 17.8% yellow, (a) query results, (b) query statistics. 

C.2.1     13.5% green, 3.4%red, 17.8% yellow 

C.2.2    26.0% blue, 19.7% violet ■11 ■Hill lllill' 

C.2.3    16.8% blue, 22.2% green, 1.8% yellow 

C.2.4    22.8% red, 24.2% green, 17.3% blue and 

C.2.5    13.2% yellow, 15.3% violet, 15.3% green 

are shown in figure 7 through figure 11, respectively. The CBOX lower bound gives the best results 
for queries C.2.1 and C.2.2, but its performance drops by an order of magnitude for C.2.3, and it is 
completely ineffective for C.2.4 and C.2.5. Indeed, the CBOX lower bound pruned only 1 of 20000 
database images for query C.2.5. The CBOX behavior can be explained in part by the locations 
of centroids of the query distributions and the database distributions. See figure 12. Roughly 
speaking, the effectiveness of the CBOX bound is directly related to the amount of separation 
between the database distributions and the query distribution, with larger separation implying 
a more effective bound.   The query C.2.1 consists almost entirely of green and yellow.   As one 
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(a) 
lall? 

(b) 

«&£«« ' ■  •■■  I 

»'   QuetyResuft 

Lower Bound # Pruned Query Time (s) 

NONE 0 3.812 

CBOX 18631 0.453 

PMAXFSBL 16472 1.452 

PAMAXFSBL 17032 1.010 

PASUMFSBL 17465 1.037 

1——.1 ,1  

• a 

Figure 8: Query C.2.2 - 26.0% blue, 19.7% violet, (a) query results, (b) query statistics. 

(a) 

F1 

wm 

(b) 

Lower Bound # Pruned Query Time (s) 

NONE 0 4.073 

CBOX 1631 3.999 

PMAXFSBL 10550 3.235 

PAMAXFSBL 11690 2.648 

PASUMFSBL 15386 1.612 

Figure 9: 
statistics. 

Query C.2.3 - 16.8% blue, 22.2% green,  1.8% yellow,    (a) query results,    (b) query 

23 



(a) 

(b) 

$M0$fä0ä 

Lower Bound # Pruned Query Time (s) 

NONE 0 3.969 

CBOX 26 4.158 

PMAXFSBL 3606 4.342 

PAMAXFSBL 3399 4.010 

PASUMFSBL 12922 2.324 

Figure 10: Query C.2.4 - 22.8% red, 24.2% green, 17.3% blue, (a) query results, (b) query statistics. 

(a) 

(b) 

Lower Bound # Pruned Query Time (s) 

NONE 0 3.375 

CBOX 1 3.560 

PMAXFSBL 9608 2.924 

PAMAXFSBL 10716 2.381 

PASUMFSBL 15562 1.492 

Figure 11: 
statistics. 

Query C.2.5 - 13.2% yellow, 15.3% violet, 15.3% green,   (a) query results,   (b) query 
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50 
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Centroids in CIE-Lab Space 

,red 
C.3.1 * 

VC.2.4 
xC-2-5 

.„0.3 2 

.violet *c-2-2        xblue 

& 

x yellow 

C.2.1 

green 

,C.2.3 

100 

-100     0 

Figure 12: The centroids of the color signature distributions of a random subset of 5000 images in 
the Corel database are plotted as dots, and the centroids for the queries C.2.* and C.3.* are plotted 
as stars. The locations of blue (C.l.l), green (C.1.2), red (C.1.3), yellow, and violet are plotted as 
x's. 
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can see from figure 12, the centroid of C.2.1 is very isolated from the database centroids. The 
approximately equal amounts red, green, and blue in query C.2.4 result in a centroid which is close 
to a large number of database centroids. The same statement holds for query C.2.5 which has green 
and yellow in one corner of the CIE-Lab space, and violet at the opposite corner. 

The distances of the centroids for C.2.2 and C.2.3 to the database centroids are (i) about the 
same, and (ii) are smaller than the distance for C.2.1 and larger than the distances for C.2.4 and 
C.2.5. Observation (ii) helps explain why the performance of CBOX on C.2.2 and C.2.3 is worse 
than the performance on C.2.1, but better than the performance on C.2.4 and C.2.5. Observation (i) 
might lead one to believe that the CBOX performance should be about the same on C.2.2 and C.2.3. 
The statistics, however, show that this is not the case. To understand why, we must remember that 
the queries are partial queries. The relevant quantity is not the centroid of a database distribution, 
but rather the locus of the centroid of all sub-distributions with weight equal to the weight of the 
query. Consider images with significant amounts of blue and green, and other colors which are 
distant from blue and green (such as red). The other colors will help move the distribution centroid 
away from blue and green. However, a sub-distribution of such an image which contains only blue 
and green components, will have a centroid which is close to blue and green, and hence close to 
the centroid of C.2.3. The distance between the query centroid and this image centroid may be 
large, but the CBOX lower bound will be small (and, hence, weak). From figure 12 and the results 
of C.2.2 and C.2.3, one can infer that there are many more images that contain blue, green, and 
significant amounts of distant colors from blue and green than there are images that contain blue, 
violet, and significant amounts of distant colors from blue and violet. The centroid is a measure of 
the (weighted) average color in a distribution, and the average is not an accurate representative of 
a distribution with high variance (i.e. with colors that span a large portion of the color space). 

The projection-based lower bounds PMAXFSBL, PAMAXFSBL, PASUMFSBL compare two dis- 
tributions by comparing the distributions projected along some set of directions. The PMAXFSBL, 

PAMAXFSBL, and PASUMFSBL lower bounds make stronger use of a distribution than simply re- 
ducing it to its average point, so there is hope that the these bounds will help when the CBOX 
bound is ineffective. In queries C.2.3, C.2.4, and C.2.5, the projection-based lower bounds prune 
far more EMD calculations than the CBOX bound. However, pruning a large number of EMD 
calculations does not guarantee a smaller query time than achievable by brute force because of the 
overhead of computing a lower bound when it fails to prune an EMD calculation. In all the ran- 
dom partial queries C.2.*, the query times for PMAXFSBL, PAMAXFSBL, and PASUMFSBL were 
less than the query times for brute force processing, except for the PMAXFSBL and PAMAXFSBL 

bounds in query C.2.4. In particular, the PASUMFSBL bound performed very well for all the 
queries. Since the projection-based lower bounds are more expensive to compute than the CBOX 
lower bound, they must prune more exact EMD calculations than CBOX in order to be as effective 
in query time. 

The queries in the final two examples of this section are both images in the Corel database. 
The results of the queries 
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(b) 

Lower Bound # Pruned Query Time (s) 

NONE 0 15.768 

CBOX 19622 0.535 

PMAXFSBL 19635 1.522 

PAMAXFSBL 19548 1.062 

PASUMFSBL 18601 1.847 

Figure 13: Query C.3.1 - sunset image, (a) query results, (b) query statistics. 

C.3.1 

C.3.2 

and 

are shown in figure 13 and figure 14, respectively. The distributions for queries C.3.1 and C.3.2 
contain 12 and 13 points, respectively. Notice that the brute force query time for the C.3.* queries is 
much greater than the brute force query time for the C.I.* and C.2.* queries. The difference is that 
both the query and the database images have a "large" number of points for the C.3.* queries. All 
the lower bounds perform well for query C.3.1, but the CBOX lower bound gives the lowest query 
time. Recall that the CBOX lower bound reduces to the distance between distribution centroids 
for equal-weight distributions. The centroid distance pruned many exact EMD calculations for 
C.3.1 because most of the weight in the distribution is around yellow and orange, far from the 
centroids of the database images (as one can see in figure 12). The blue, green, and brown in 
query C.3.2 span a larger part of the color space than the colors in C.3.1, the query centroid is 
close to many database centroids (once again, see figure 12), and the centroid distance lower bound 
does not perform as well as for C.3.1. The projection-based lower bounds, however, each give a 
better query time for query C.3.2 than the centroid-distance bound. Recall that the lower bounds 
PMAXFSBL, PAMAXFSBL, and PASUMFSBL reduce to the stronger lower bounds PMAX, PAMAX, 
and PASUM for equal-weight distributions. The PASUMFSBL lower bound yields a tolerable query 
time for query C.3.2. 
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(b) 

Lower Bound # Pruned Query Time (s) 

NONE 0 14.742 

CBOX 9571 8.106 

PMAXFSBL 15094 5.893 

PAMAXFSBL 13461 6.741 

PASUMFSBL 17165 3.343 

Figure 14:   Query C.3.2 - image with trees, grass, water, and sky.   (a) query results,   (b) query 
statistics. 

7    The EMD under Translation 

Given a distribution y = (Y, u) G Dd>™, let y © t G Dd'n denote the translation of y by t G Rrf: 

y®t = {(yi +t,ui),(y2 +t,u2),...,(yn + t,un) }. 

The EMD under translation EMD<7-(a;, y) is defined as 

If 

then 

EMDr(z,y) = min EMD(x,y®t). 
tend 

hd(F, t) = WORK(F, x, y © t) = £ E fiAx» Vj + *). 

min(u;s,uE) 

hd{F,t) 
(15) 

Note that EMD^-(x, y) is invariant under translation of a; or y iid(xi,yj+t) = d{xi — t,yj). Here we 
have added the superscript d to EMD7- to show the dependence on the ground distance function. 
We have also used the fact that T(x,y) = T(x,y © t), which follows directly from the fact that 
the weights of y © t are the same as the weights of y. Clearly, it suffices to minimize hd(F,t) to 
compute the EMD under translation. In section 7.1, we give a direct, but inefficient, algorithm to 
compute the global minimum of hd(F,t) over the region 

R(x,y) = {(F,t)  : F G F(x,y),teRd} = T[x,y) x Rd. 

In section 7.2, we give an efficient iterative algorithm that always converges monotonically, although 
not necessarily to the global minimum. Nonetheless, it may find the global minimum if the iteration 
is run with a few different initial translations. 
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Both the direct and iterative algorithms require a solution to the following minimization prob- 
lem: for F = (fij) G F{x,y) fixed, compute 

min hd{F,t) = min WORK{F,x,y® t). (16) 
teRd teRd 

If 
d{xu yj +t) = d(xi - yj, t), (17) 

then (16) can be written as 

mili Y Y fijd(xi ~ Vh *)• 
teTtd . , ■  , 

Note that condition (17) holds for any Lp distance function d. If we let Zij = xt - yj and we convert 
the two-dimensional index ij into a one-dimensional index I to obtain /; and zi, then 

m    n mn 

J2 Yl fiJd(xiiV3 +t)=Y fld(zi,t), 
i=l j=l 1=1 

and the minimization problem 

m    n mn 

min V H fijd(xi - yj,t) = min V fid{zut) (18) 

asks for a point i which minimizes a sum of weighted distances to a given set of points. This minisum 
problem is the subject of section 8, where we show how to solve the problem when the distance 
function d is the L2-distance squared (section 8.1), the Li-distance (section 8.2), and the L2-distance 

(section 8.3). The solutions to these three problems allow us to compute EMDr
2, EMDr\ and 

EMD^2, respectively. It should be noted, however, that even for equal-weight distributions, using 
the L2-distance squared for the ground distance means that the EMD is no longer a metric. One 
reason to consider the L2-distance squared is that there is a simple closed form solution for the 
optimal translation if the distributions are equal weight (see section 8.1). 

7.1    A Direct Algorithm 

The function hd(F,t) is linear in F. It follows that for t fixed, the minimum value 

min     hd(F,t) 
FeT(x,y) 

is achieved at one of the vertices (dependent on t) of the convex polytope T(x, y). If we let 

V(x,y) = { vi, ..., vN } 

denote the finite set of vertices of F(x,y), then 

min     hd{F,t) = hd(F*{t),t)       for some vertex F*{t) G V(x,y), 
FET(x,y) 

and 
min       hd(F,t) = mm hd(F*{t),t). (19) 

(F,t)eR{x,y) tend 
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The minimum on the right-hand side of (19) can be rewritten as 

min hd(F*(t),t) =    min     min hd(F,t), 
teKd F£V(x,y)  iGRd 

so that 

min       hd(F,t) =    min     min hd(F,t). (20) 
(F,t)6R(x,y) F€V(x,y)  teW 

Thus, if the innermost minimum on the right-hand side of (20) exists, then the minimum on the 
left-hand side of (20) must also exist and must be achieved at some (F*,t*), where F* e V(x,y). 
Given an algorithm to compute 

min hd(F,t) 
t€Rd 

for a fixed F, the minimum on the left-hand side of (20) may be computed by simply looping over 
all the vertices in V(x,y): 

min       hd(FA) =    min     min hd(vk,t). (21) 
(F,t)€R(x,y) k=l,...,N teRd "' V     ' 

Only a finite number of flow values must be examined to find the minimum work. 
Although this simple strategy guarantees that we find a globally optimal translation, it is not 

practical because N can be very large. We may eliminate the variable /n in the definition of a 
feasible flow by solving (4) for fn as an affine combination of the other /y's. Substituting for /n 
in (1), (2), and (3) leaves mn + m + n linear inequalities. This reasoning shows that F(x,y) is an 
{mn — l)-dimensional convex polytope defined by the intersection of mn + m + n halfspaces. The 
Upper Bound Theorem ([13],[3]) states that a simple polytope in Rd with n facets has 0(nLd/2J) 
vertices, and there are examples for which this bound is tight. Therefore, T{x, y) can have as many 
as N = 0((mn -1 )mn+m+«) vertices. Even for small values of m and n, this is too many vertices to 
exhaustively check in a reasonable amount of time. The beauty of the simplex algorithm ([10]) for 
solving a linear program is that it provides a method for visiting vertices of the feasible polytope 
in such a way that the objective function always gets closer to its optimal value (and the number 
of vertices visited is always no larger in order than the maximum of the number of variables and 
the number of constraints). In the next section, we give an iterative algorithm that generates a 
sequence of (flow,translation) pairs for which the amount of work decreases or remains constant at 
every step. 

7.2    An Iterative Algorithm 

Consider the following iteration that begins with an initial translation t^: 

(m    n \ 

F=Ä,»>g|?^"w+(W)J' (22) 

(m     n \ 

^EE/«)d(^ %■ + *)]■ (23) 

The minimization problem on the right-hand side of (22) is the familar transportation problem. 
Under the assumption (17), the minimization problem on the right-hand side of (23) is the minisum 
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problem (18) to be covered in section 8. The flow and translation iterates define the work and EMD 
iterates 

m     n 

WORK^    =   ££4M^,yi + *(A;))  = WORK (>(fcUy© i^), 

lks WORK**) 
EMD^    =    —— r. 

mm(w£,«s) 

The order of evaluation is 

*(o) __> _p(0)    _^   t(i) _+ i?(i)    __>.   ... 
< v / > , / 

WOEKC'.EMD'
0
' WORK'1', EMD*1' 

By (22), we have 

m     n m     n 

WORK<*+1> = E E /i?+1)d (*» W + *(*+1)) ^ E E /£ ><* (** »i +t{k+l)) ■ (M) 
i=ij=i i=ij=i 

From (23), we know 

m     n m     n 

E E 4^ (**> W + *(fc+1)) ^ E E 4^ (*«> W + i(fc)) = WORK<*>. (25) 
i=lj=l i=lj=l 

Combining (24) and (25) shows 

WORK^+1) < WORK^. (26) 

The decreasing sequence (W0RK(A;) ) is bounded below by zero, and hence it converges ([7]). There 

is, however, no guarantee that the work iteration converges to the global minimum of hd{F,t) = 
WORK(F,x,yet). 

One way for the work iteration to converge is if F^ is returned in step (22) as an optimal flow 
for #), and #+1) = #) is returned in step (23) as an optimal translation for F^. Denote the 

indicator function for this event as MUTUAL (F^,iW)' lt is clear that 

MUTUAL (f(*),t(*') 

t(k) = i(*+i) =   ■■■ , 

p(k) =        p(k+i) =    ••• ,        and 

WORK^    =   WORK(fe+1)   = 

The fact that F^ is an optimal flow for #) implies 

dhd 

dF 
(i?(*),/(*))=0, (27) 

where a neighborhood of F E d(F(x, y)) must be restricted to lie within F{x, y). The fact that #) 
is an optimal translation for F^ implies 

^(^W,iW)=0. (28) 
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Combining conditions (27) and (28) shows that the work iteration converges to either a local 

minimum or a saddle point value if MUTUAL (F^k\ t^) is true. 

Now suppose that the routine that solves the linear program (LP) in (22) always returns a 
vertex of F{x,y). The simplex algorithm, for example, always returns a vertex of the feasible 
polytope. This is possible since there is always a vertex of the feasible polytope at which a linear 
objective function achieves its minimum. With the assumption that the flow iterates are always 
vertices of Jr(x,y), there will be only a finite number of points (F, t) that the work iteration visits 
because there are a finite number of flow iterates, and each translation iterate (other than the initial 
translation) must be an optimal translation returned for one of the flow iterates. It follows that 
there are only a finite number of work values generated. Since the work iteration is guaranteed to 
converge, the work iterates must stabilize at one of these work values. Suppose 

WC-UKW = WORK(fc+1) = • • • . (29) 

Since there are only a finite number of pairs (F,t) visited, condition (29) implies that there must 
be a repeating cycle of pairs: 

fp(k)^t(k)\     ___      (F(k+r-l)^t(k+r-l)\(F(k+r)^(k+r)\ = (pW^k)} 

For r > 1, the work iteration converges even though the flow and translation iterations do not 
converge. However, such a non-trivial (flow,translation) cycle is unstable in the sense that it can be 
broken (for any real problem data) by perturbing one of the translation iterates by a small amount. 
In practice, the work iteration almost always converges because a length r = 1 cycle occurs. A 
cycle of length r = 1 starting at (F^k\t^kA is exactly the condition MUTUAL (F^k\t^\ and we 
previously argued that the work iteration converges to a critical value in this case. 

Finally, let us show that the work sequence will stabilize at the global minimum once F^ = F*, 
where (F*,t*) is optimal for some t*. First, it is easy to see that if (F*, t*) = (F^k\t^kA is optimal, 

then hd{F%t*) = WORK**) = WORK(fc+1) = ■•• . This is an immediate consequence of the 
optimality of (F*,t*) and the monotonicity condition (26). Now suppose F^ = F*, where (F*,t*) 
is optimal. Note that #+1) and t* both solve (23), so 

hd (F*^t(k+i)^ = hd (p{k)jk+i)^ = hd (F(fc);i*) = hd(F\t*). 

(If (23) has a unique solution, then i(fe+1) = t*.) Since condition (24) gives 

hd ^(*+i)jt(fc+i)j < hd ^(fc)jt(fc+i)^ = hd(F*^ 

and since 
hd ^(fc+D^fc+i)) > /^(i?*^*)        (optimality of (F*,**)), 

WORK(fe+1) = hd (j^+i^+i)) = hd{F*,t*). 

(If (22) has a unique solution, then F^k+1^ = F*.) We have already argued that once the work 
sequence hits the minimum, it must repeat at this minimum forever. 

Let us summarize the results of this section. The work iteration always converges. We can 
arrange to have all flow iterates at the vertices of T(x,y). In this case, the (flow,translation) 
iterates must cycle.  A cycle of length r > 1 will almost never occur, and a cycle of length r = 1 
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implies that the (flow,translation) sequence converges to a critical point and, therefore, that the 
work sequence converges to either a local minimum or a saddle point value. Thus, in practice the 
work iteration almost always converges to a critical value. If the flow iteration ever reaches a vertex 
at which the minimum work occurs with a suitable choice of translation, then the work iteration 
converges to the global minimum. Since there is no guarantee that the work iteration converges 
to the global minimum, the iterations should be run with a few different starting translations i(0) 

in search of the true minimum work. In some preliminary experiments, we have found that the 
work iteration usually converges within a handful of iterations (three to five) using d equal to the 
L2-distance squared, the Li-distance, or the Z/2-distance. 

8    Minimizing a Weighted Sum of Distances 

The abstract minimization problem considered in this section is 
n 

min ^2wid(p,pi). 
p    i=i 

We now show how to solve this problem when d is the L2-distance squared, the I^-distance, and 
the L2-distance. 

8.1    Minimizing a Weighted Sum of Squared L2 Distances 

If d is the L2-distance squared, then the minisum problem is a weighted sum of squares problem 
n 

min ^Wi\\p - piWl. 
p    i=i 

It is well-known (and easily proven using standard calculus) that the unique optimal location p* is 
at the centroid 

p*=p=^mP\ 
w% 

Returning the original problem (18) for a moment, we have 

Y?=\fm t* = z    = 

z    = 

Emn  f 
1=1 JI 

Hj=l 2Zj=l fij(xi ~ Vj) 
Em    sr^n      t 

i=l Z-ij=l Jij 

Z2i=l 2_/j=l fij\xi ~ Vj) 
min(ws,us) 

When x and y are equal-weight distributions, 

Ylj=i xi z2j=i Jij      zJj=i Vj z2j=i Jij 
z   = 

t* = z    =   x — y. 

((6),(7)) 

In the equal weight case, the best translation for any feasible flow F = (fa) isx — y. The iteration 
L2 

given in section 7.2 is not needed in this case to compute EMDr
2(x, y). Instead, simply translate 

y by x - y (this lines up the centroids of x and y) and compute EMDL2(x, y © (x - y)). 
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8.2    Minimizing a Weighted Sum of L\ Distances 

In this section, we consider the minisum problem when d is the Li-distance.   The minimization 
problem is 

mm 
p    *■—'      ^—' 

i=i i=i     fc=i 
in Ylwi\\P~Pi\h    =   min X!Wi 12 \P{k) ~P: 

p   1=1     fc=l 

p k=\  \i=l 
n 

min S^illp-Pilli = E teE^r 
p i=i k=i \p{) t=i   ' 

(*) _ „w Pi 

where p^ and p> are the kth components of p and pj, respectively. Thus, a solution to the 
problem in one dimension gives a solution to the problem in d dimensions by simply collecting the 
optimal location for each of the one-dimensional problems into a d-dimensional vector. 

Now suppose pi < p2 < ■ ■ ■ < pn are points along the real line, and we want to minimize 

n 

9(P) = Ylwi\P~Pi\- 
i=l 

Let PQ = —oo and pn+\ = +oo. Then 

l n 

9{P) = J2W^P~P^+  Yl wi(Pi~P)        for pe\pi,pi+1],   l = 0,...,n. 
i=l i=l+l 

Over the interval \pi,pi+i], g(p) is affine in p: 

(l n \ /    n I \ 

J2Wi~   J2   Wi     P +  I   E   wiPi ~J2WiPi for p G \pi,Pl+i]. 
i=l i=l+l      ) \i=l+l i=l ) 

If we let 
l n 

mt = J2wi-  J2 Wi (30) 
i=l i=l+l 

denote the slope of g(p) over \pi,Pi+i], then 

and 
mi+i = ml + 2wl. 

The function g(p) is a continuous piecewise linear function with slope increasing from a negative 
value at -oo to a positive value at +oo, and as such it obviously has a minimum value at the point 
when its slope first becomes nonnegative. Let 

/* = min { I : m/ > 0 }. 

If mi* j£ 0, then then the unique minimum value of g(p) occurs at pi*. Otherwise, mi* = 0 and 
the minimum value of g{p) is achieved for p £ \pi*,pi*+i].   See figure 15.   In the special case of 
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Minisum Problem: L1-Distance on the Line 
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Minisum Problem: L1-Distance on the Line 
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Figure 15: The minisum problem on the line with unequal weights, (a) p = [27,40,51,61,71,81, 92], 
w = [8,4,4,2,3,3,4]: I* = 3, m/* > 0, and there is a unique minimum at ps = 51. (b) p = 
[27,40,51,61,71,81,92], w = [8,4,4,2,3,3,8]: Z* = 3, m(. = 0, and the minimum occurs at every 
value in [p3,P4] = [51,61]. 
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mm 
p 

equal-weight points, the minimum value occurs at the ordinary median value of the points. If 
Wi = w, then it follows easily from (30) that m/ = w(2l — n). If n is odd, then I* = [n/2], mt* > 0, 
and the unique minimum of g(p) occurs at the median point P[n/2l- If n is even, then I* = n/2, 
m/* = 0, and the minimum value of g(p) is attained for every point in the interval [pn/2>P(n/2)+i]- 
See figure 16. 

8.3    Minimizing a Weighted Sum of L2 Distances 

The final minisum problem that we consider is when d is the L2-distance function. The minimization 
problem 

n 

Y^wi\\P ~ Pi\\2 (31) 

has a long history ([15]). A basic iteration procedure that solves this problem was proposed in 1937 
by Weiszfeld ([14]). Consider the objective function 

n 

i=l 

If the points pi,...,pn are not collinear, then g(p) is strictly convex and has a unique minimum. If 
Pi,... ,pn are collinear, then an optimal point must lie on the line through the given points (if not, 
one could project the claimed optimal point onto to the line, thereby decreasing its distance to all 
the given points, to obtain a better point). In this case, the algorithm given in section 8.2 for points 
on the real line can be used (the I^-distance reduces to the absolute value in one-dimension). The 
objective function is differentiable everywhere except at the given points: 

dg _ «Xwi(p-pi) 

dp     f^[ Hp-Ptlb" 

Setting the partial derivative to zero results in the equation 

At0i(p-Pi)   _ 

fellP-ftlb        ' 

which cannot be solved explicitly for p.  The Weiszfeld iteration replaces the p in the numerator 
by the (k + l)st iterate p(fc+1) and the p in the denominator by the fcth iterate p^k\ and solves for 
p(*+i). 

Pi if pW= pi 

Here are some facts about this iteration (assuming the input points are not collinear). 

• The iteration always converges. ([9]) 

• If no iterate p^ is equal one of the given points, then the iteration converges to the global 
minimum location of g (p). ([9]) 

• The iteration can fail to converge to the global minimum location for a continuum of starting 
values p(°> because some iterate p^ becomes equal to a non-optimal given point. ([2]) 

• If the optimal location is not at one of the given points, then convergence will be linear. ([8]) 
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Figure 16: The minisum problem on the line with equal weights, (a) p = [27,40,51,61, 71,81, 92], 
w = [4,4,4,4,4,4,4]: /* = 4, mi* > 0, and there is a unique minimum at the ordinary median 
pA = 61. (b) p = [27,40,51,71,81,92], w = [4,4,4,4,4,4]: I* = 3, mj. = 0, and the minimum 
occurs at every value in the interval [p3,p4.] = [51, 71]. 
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• If the optimal location is at one of the given points, then convergence can be linear, super- 
linear, or sublinear. ([8]) 

Since convergence to the global minimum location is not guaranteed, the iteration should be run 
more than once with different starting points. 

It is conjectured in [2] that if the starting point is within the affine subspace P spanned by the 
given points, then the Weiszfeld iteration is guaranteed to converge to the global minimum location 
for all but a finite number of such starting points. If this conjecture is true, then the iteration will 
converge with high probability to the optimal location if one chooses a random starting point in 
P. Note that P is the entire space Rd if the n — 1 vectors pn—pi,pn-P2,--- ,Pn - Pn-i span all 
of Rd. If the given points are random, this event is very likely to occur if n — 1 > d. In regards to 
speeding up convergence, see [5] for an accelerated Weiszfeld procedure. 

9    Conclusion 

We have presented several lower bounds on the EMD which do not require equal-weight distribu- 
tions, and are therefore applicable to partial queries. The effectiveness of the bounds was illustrated 
in a color-based retrieval system where applying one bound per query almost always resulted in a 
smaller query time than brute force query processing. Using a combination of bounds per query 
may improve search times even more. In particular, a promising combination seems to be the 
CBOX bound followed by the PASUMFSBL projection-based bound. The CBOX bound is faster 
to compute, but the PASUMFSBL bound makes stronger use of the distributions than simply using 
averages. The latter bound seems to be the best of the projection-based bounds that we proposed, 
although this may vary with the database and mode of query. More experimentation is needed to 
see if there is a clear best bound or combination of bounds for a majority of applications. 

The other main topic of this work was computing the EMD under translation. The frameworks 
of the proposed methods are still applicable when the transformation group is not the translation 
group. In our methods, we must solve the problem of finding the best transformation for a given 
flow. This problem reduces to problems with known solutions in the translation case when the 
ground distance is the Li-distance, the L2-distance, or the ^-distance squared. Once we can find 
the best transformation for a given flow, we can still find the global minimum by looping over 
the vertices of a convex polytope, and a local minimum (almost always) using our two stage mini- 
mization framework. Future work will consider other types of transformations such as Euclidean, 
similarity, and affine transformations. 

Acknowledgements 

We would like to thank Yossi Rubner for his transportation problem code and for the color signa- 
tures of the Corel database images used in our experiments. 

References 

[1] M. Bern, D. Eppstein, L. Guibas, J. Hershberger, S. Suri, and J. Wolter. The centroid of 
points with approximate weights. In Proceedings of Third Annual European Symposium on 
Algorithms, pages 460-472, 1995. 

38 



[2] R. Chandrasekaran and A. Tamir. Open questions concerning Weiszfeld's algorithm for the 
Fermat-Weber location problem. Mathematical Programming, Series A, 44(3):293-295, Nov. 

1989. 

[3] K. L. Clarkson. A bound on local minima of arrangements that implies the upper bound 
theorem. Discrete & Computational Geometry, 10(4):427-433, 1993. 

[4] G. B. Dantzig. Application of the simplex method to a transportation problem. In Activity 
Analysis of Production and Allocation, pages 359-373. John Wiley and Sons, 1951. 

[5] Z. Drezner. A note on the Weber location problem. Annals of Operations Research, 40(1- 
4):153-161, 1992. 

[6] F. S. Hillier and G. J. Lieberman. Introduction to Mathematical Programming, pages 202-229. 
McGraw-Hill, 1990. 

[7] R. Johnsonbaugh and W. E. Pfaffenberger. Foundations of Mathematical Analysis, pages 
49-50. Marcel Dekker, inc., 1981. 

[8] I. N. Katz. Local convergence in Fermat's problem. Mathematical Programming, 6(1):89-104, 
Feb. 1974. 

[9] H. W. Kuhn. A note on Fermat's problem. Mathematical Programming, 4:98-107, 1973. 

[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C, 
pages 430-443. Cambridge University Press, second edition, 1992. 

[11] Y. Rubner, L. J. Guibas, and C. Tomasi. The earth mover's distance, multi-dimensional 
scaling, and color-based image retrieval. In Proceedings of the APRA Image Understanding 
Workshop, pages 661-668, May 1997. 

[12] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with applications to image 
databases. In Proceedings of the IEEE International Conference on Computer Vision, 1998. 
To appear. 

[13] R. Seidel. The upper bound theorem for polytopes: An easy proof of its asymptotic version. 
Computational Geometry: Theory and Applications, 5(2):115—116, Sept. 1995. 

[14] E. V. Weiszfeld. Sur le point par lequel la somme des distances de n points donnes est minimum. 
Tohoku Mathematics Journal, 43:355-386, 1937. 

[15] G. O. Wesolowsky. The weber problem: History and perspectives. Location Science, 1(1):5—23, 
May 1993. 

[16] G. Wyszecki and W. S. Styles. Color Science: Concepts and Methods, Quantitative Data and 
Formulae. Wiley, 1982. 

39 



I    A Lower Bound on the L2-Norm in terms of the Li-Norm 
Theorem 7 

IHl2>4=||o||i        VaeRd. 
\/d 

Proof   The inequality obviously holds when a = 0, so it suffices to show that 

•      Ilall2 1 mm -—— = ——. 
a^o   ||a||i       y/d 

The homogeneity of all Lp norms 

||ca||p = \c\ \\a\\p    for c G R 

implies that 

■    IHb •      11  11 mm =   mm      a b- 
a^°  IHIi      IWII=I 

If abs(a) denotes the vector formed by taking the absolute value of each of the components of o, 
then ||abs(a)||p = ||a||p.-It follows that 

Let 

Then 

min     a 2 =       rnin a b- 
|a||i=l ■     a>0,||a||i = l 

f(a) = Ylak and 9(a)=[Y,ak) 1. 

min       I let! [2 =     min   f(a) 
a>0,||a||i=l \9(a)=0 J 

According to the theory of Lagrange multipliers, we must have 

(V/)(a*)    =   A((Vp)(a*))    for some A G R. 

2a*    =   Al 

at an extremum location a*, where 1 denotes a vector of d ones. Solving for a* gives a*k = A/2 
for k = l,...,d. Solving for A in the constraint g(a*) = 0 gives A = 2/rf. Hence a% = 1/d 
for k = l,...,d, and f(a*) = 1/d. Obviously, there is no maximum value for the homogeneous 
function ||a||2 on the plane g(a) = 0. Therefore, 

min   f(a) = f(a*) = -. 

Taking the square root of both sides completes the proof. ■ 
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